L'approche française de gestion des déchets radioactifs privilégie des solutions centralisées de stockage, permettant de disposer des meilleures mesures de protection de la population, tout en optimisant les coûts. Ainsi, l'ensemble des déchets de très faible activité, les fameux TFA, produits dans les prochaines années devrait être réuni au Centre industriel de regroupement, d'entreposage et de stockage, le CIRES, d'une capacité de 650 000 mètres cubes, dont 328 000 mètres cubes sont déjà utilisés.
Avec la progression des premières opérations de démantèlement d'installations nucléaires, il est très vite apparu qu'à raison d'un flux annuel de l'ordre de 25 000 à 30 000 mètres cubes, la capacité résiduelle du CIRES ne permettrait pas de faire face aux besoins de gestion des déchets TFA au-delà d'une dizaine d'années. Une extension des capacités du CIRES à 900 000 mètres cubes est effectivement envisagée. Mais cela restera insuffisant pour faire face à l'inflation prévisionnelle des volumes de production de déchets TFA, qui ont doublées depuis la création du CIRES, pour atteindre 2 200 000 mètres cubes, à terme.
Même si la capacité de stockage du CIRES s'avérait suffisante, il resterait, par ailleurs, à évaluer l'impact sur l'environnement et sur la santé du transport de millions de tonnes de déchets à travers la France.
Lors de leur audition, les producteurs de déchets radioactifs, tout comme l'Autorité de sûreté nucléaire et l'Agence nationale pour la gestion des déchets radioactifs (ANDRA), se sont montrés ouverts à l'exploration de solutions alternatives au stockage. Faute de temps, je n'en citerai que trois :
- la première consiste à maintenir, sur les sites industriels pérennes, des bâtiments qui n'ont fait l'objet, dans le passé, d'aucun incident de contamination, et pourraient donc être réutilisés ;
- la deuxième a trait à la création de stockages locaux simplifiés, destinés aux déchets TFA les moins radioactifs. ;
- la troisième solution concerne la valorisation des déchets métalliques, à l'exemple de ce qui se pratique en Allemagne ou en Suède. Cette valorisation porterait, au départ, sur des lots homogènes comme les métaux issus du démantèlement de l'usine Georges-Besse I et des générateurs de vapeur, avec un flux annuel de 15 000 à 20 000 tonnes d'aciers de très faible activité. Les métaux seraient fondus dans une installation dédiée. Cette opération permet en effet de récupérer l'essentiel des radionucléides dans le laitier, qui devient un déchet radioactif.
L'une des inconnues de cette dernière solution concerne la réutilisation des métaux ainsi décontaminés, les possibilités étant limitées dans l'industrie nucléaire. Il resterait à déterminer si d'autres industries, par exemple la fabrication de pipeline pour l'exploitation pétrolière, accepteraient de réutiliser ces métaux.
Plusieurs pays du nord de l'Europe, tels que l'Allemagne ou la Suède, a priori peu suspects de négligence en matière environnementale, ont mis en place, à partir de la fin des années 1990, des seuils de libération permettant à certains déchets très faiblement radioactifs d'être réutilisés, recyclés ou simplement stockés en dehors de la filière nucléaire.
Ces seuils de libération s'appuient notamment sur des recommandations de l'Agence internationale de l'énergie atomique (AIEA) publiées en 1996, et une directive européenne.
Pour les matériaux ferreux, l'AIEA préconise un seuil d'activité d'un becquerel par kilogramme. À titre de comparaison, l'eau présente en moyenne une activité de six becquerels par kilogramme, et le lait de soixante à quatre-vingt becquerels par kilogramme. Mais les radionucléides artificiels ne présentent pas exactement les mêmes problématiques que les radionucléides naturels. J'ai rencontré dernièrement la société AREVA et des fondeurs au sujet de la possibilité d'un recyclage des déchets métalliques très faiblement contaminés. Une fois ceux-ci traités, l'une des utilisations pourrait concerner le renforcement des galeries de stockage de l'installation CIGEO.
Compte tenu du scepticisme de nos interlocuteurs sur la pertinence d'un tel dispositif, il a semblé utile de la vérifier sur place, en Allemagne. D'une part, l'utilité des seuils de libération est difficilement discutable, en l'absence dans ce pays, depuis 1998 et jusqu'en 2022, de stockage opérationnel pour les déchets radioactifs. D'autre part, les résultats obtenus sont probants, puisque seulement 2,4 % des déchets de très faible activité sortant des zones contrôlées des installations nucléaires allemandes sont, au final, considérés et traités comme des déchets radioactifs.
Toutefois, l'acceptation sociale de ce dispositif apparaît encore fragile, d'où sans doute la relative discrétion de nos interlocuteurs allemands sur les destinations finales des déchets libérés. Néanmoins, celles-ci existent bien, où qu'elles soient situées, éventuellement hors d'Allemagne, rien n'interdisant à des déchets libérés de traverser les frontières.
De toute évidence, la situation est différente en France, où l'existence du CIRES permet encore, au moins pour quelques années, de stocker de façon sûre et à un coût modéré ce type de déchets.
L'adéquation du principe des seuils de libération à la gestion des déchets radioactifs français resterait à évaluer, notamment du point de vue de l'acceptation sociale. Aussi l'OPECST a-t-il saisi, en novembre 2016, le Haut Comité pour la transparence et l'information sur la sécurité nucléaire (HCTISN) de cette question.
En tout état de cause, à partir du moment où de nouveaux exutoires sont envisagées pour la gestion de certaines catégories de déchets très faiblement radioactifs, la notion de seuils de libération pourrait trouver une utilité, en tant que référentiel permettant de justifier de façon transparente l'agrément de solutions spécifiques.
Je vais redonner la parole à Christian Bataille qui va revenir à la question du stockage géologique profond.