Intervention de Dominique Gillot

Réunion du 14 mars 2017 à 16h30
Office parlementaire d'évaluation des choix scientifiques et technologiques

Dominique Gillot, sénatrice, membre de l'OPECST, rapporteure :

– J'en viens aux questions technologiques et scientifiques qui se posent en matière d'intelligence artificielle. Il y a d'abord les sujets d'interrogation liés aux algorithmes utilisés par les technologies d'AI. Le rapport contient des développements sur les questions de sécurité et de robustesse et conclut sur la nécessité de toujours pouvoir arrêter un système d'intelligence artificielle, qu'il s'agisse d'un système informatique ou de son incarnation dans un robot. En 2016, Google a également posé la question du risque de perte de contrôle et c'est dans ce sens que la firme développe l'idée d'un « bouton rouge » permettant la désactivation des intelligences artificielles. La CERNA a aussi cette recommandation. Des recherches complémentaires sont nécessaires car en IA cela peut être compliqué. Pour paraphraser Raymond Aron, qui utilisait l'expression de « Paix impossible, guerre improbable » l'enjeu est donc, face à une paix improbable avec les machines, de rendre la guerre impossible.

Les biais sont l'un des plus gros problèmes posés par les algorithmes d'apprentissage automatique, ou pour être plus rigoureux, posés par les données nécessaires aux algorithmes. La question concerne en effet plus les données que les algorithmes eux-mêmes. Les impacts se font ressortir après le traitement, mais les biais, eux, sont introduits en amont dès le stade des jeux de données. En effet, les algorithmes d'apprentissage automatique et en particulier d'apprentissage profond vont reproduire, en particulier si les données ne sont pas corrigées, toutes les discriminations connues dans nos sociétés. Il convient donc d'être vigilant sur ces biais, souvent invisibles sans recherches. Le second rapport de la CERNA traite notamment de ce point. L'initiative « Transalgo » d'Inria porte largement sur ce sujet.

La gouvernance des algorithmes et des prédictions qu'ils opèrent est nécessaire. Le phénomène de « boîtes noires » des algorithmes de deep learning appelle un effort de recherche fondamentale pour accroître leur transparence : nous ne disposons d'aucune explication théorique satisfaisante des raisons pour lesquelles les algorithmes de deep learning donnent, dans un certain nombre de domaines, d'excellents résultats. Ce problème d'opacité reste entièrement à résoudre. On parle ici de phénomènes de « boîtes noires », mais elles n'ont rien à voir avec les boîtes noires des avions, qui sont des enregistreurs numériques. Le défi à relever est donc celui de l'objectif d'explicabilité des algorithmes de deep learning. L'initiative Transalgo d'Inria va dans ce sens, afin de répondre aux préoccupations exprimées. Une telle démarche va dans la bonne direction mais gagnerait à voir sa force de frappe être démultipliée par la mobilisation de plusieurs équipes de recherche. Inria ne peut rester la seule structure en France à conduire un tel projet.

Enfin, les algorithmes sélectionnent le contenu des informations dont nous disposons, ce qui pose la question des bulles d'information dites « bulles de filtres » (filter bubbles) : l'information ciblée tout comme la publicité personnalisée ou la logique de construction des « fils d'actualité » des réseaux sociaux, à l'instar de celui de Facebook, sont autant d'exemples de réalités déjà manifestes d'usage des systèmes d'intelligence artificielle, qui sont de nature à changer notre rapport au monde, aux autres et à la connaissance en orientant, voire en manipulant, notre perception de la réalité.

Ce sujet mérite une vigilance accrue des pouvoirs publics. Pour nous, l'enfermement, qu'il soit politique, idéologique ou cognitif, doit être combattu. La question va bien plus loin que les critiques formulées à l'encontre des fausses informations ou fake news. Sur ce dernier point, la recherche est assez bien avancée et, comme l'a indiqué Yann LeCun, l'intelligence artificielle peut être utilisée pour limiter les flux de fausses informations. Des outils de vérification sont ainsi mis en place par plusieurs plateformes, à commencer par Facebook.

J'en viens aux interrogations liées à la singularité, à la convergence NBIC et au transhumanisme.

La rupture dite de la « singularité technologique » appelée aussi simplement singularité, est le nom que des écrivains et des chercheurs en intelligence artificielle ont donné au passage de l'IA faible à l'IA forte. La singularité représente un tournant hypothétique dans l'évolution technologique, dont l'intelligence artificielle serait le ressort principal. De nombreuses oeuvres de science-fiction ont décrit ce tournant, qui a été une source d'inspiration très riche pour le cinéma. Les films Terminator, Matrix ou Transcendance sont des exemples de la singularité technologique qui, au-delà de la simple hostilité de l'intelligence artificielle, est souvent au coeur de l'intrigue des oeuvres de science-fiction.

Les progrès en matière d'intelligence artificielle, en particulier avec le deep learning, sont parfois interprétés comme de « bons » augures de la « singularité » mais rien ne permet de garantir la capacité à créer au cours des prochaines décennies une super-intelligence dépassant l'ensemble des capacités humaines. Par exemple, en s'appuyant sur la loi de Moore, Ray Kurzweil prédit dans un prophétisme dystopique que les machines rivalisant avec l'intelligence humaine arriveraient d'ici à 2020 et qu'elles la dépasseraient en 2045.

Nous en sommes aujourd'hui encore très loin et il n'est pas sûr que nous y arrivions un jour. AlphaGo est peut-être le meilleur joueur de Go de tous les temps, mais il n'est pas en mesure de parler ou de distinguer un chat d'un chien, ce dont serait capable n'importe quel joueur de Go humain débutant. Pour le sociologue Dominique Cardon, la tentation de l'IA forte est anthropomorphiste. Certains sont en effet tentés de plaquer sur les futures intelligences artificielles des modes de raisonnement spécifiques à l'intelligence humaine.

L'écrivain et entrepreneur futuriste Jerry Kaplan fait valoir que « le terme même d'intelligence artificielle est trompeur. Le fait que l'on puisse programmer une machine pour jouer aux échecs, au Go, à Jeopardy ou pour conduire une voiture ne signifie pas pour autant qu'elle soit intelligente ! Aujourd'hui, n'importe quelle calculette achetée en supermarché peut faire bien mieux que les plus brillants cerveaux. Ces calculatrices sont-elles pour autant intelligentes ? Je ne le crois pas. Au fil du temps, nous découvrons de nouvelles techniques permettant de résoudre des problèmes bien précis, à l'aide de l'automatisation. Cela ne signifie pas pour autant que nous soyons en train de construire une super-intelligence en passe de prendre le pouvoir à notre place ».

Ces observations conduisent à relativiser les récents progrès de l'intelligence artificielle et en particulier à contester le fantasme de l'intelligence artificielle forte car elles récusent la pertinence d'une comparaison avec l'intelligence humaine.

Ce catastrophisme oublie également le caractère irréductible de l'intelligence humaine au calcul. Il évacue la place des émotions, celle de l'intelligence corporelle.

Non seulement l'avènement d'une super intelligence à long terme n'est pas certaine mais la menace à court terme relève du pur fantasme. Il s'agit de fantasmes sur la capacité des algorithmes à devenir conscients, autrement dit dotés de capacités réflexives les rendant capables de se représenter à eux-mêmes.

Pour nous, nier la possibilité d'une IA forte n'a pas de sens, toutefois se prononcer sur son imminence ou sur le calendrier précis de son avènement semble tout aussi peu raisonnable, car c'est indémontrable scientifiquement.

Yann LeCun estime que « beaucoup des scénarios catastrophes (en intelligence artificielle) sont élaborés par des personnes qui ne connaissent pas les limites actuelles du domaine. Or les spécialistes disent qu'ils sont loin de la réalité ».

De même Rob High, directeur technique du projet Watson d'IBM, estime qu'il est « trop tôt pour employer le terme intelligence artificielle, mieux vaut parler d'outils capables d'élargir les capacités cognitives humaines ».

Greg Corrado, directeur de la recherche en intelligence artificielle chez Google, nous a expliqué qu'il était plus juste de parler d'intelligence augmentée plutôt que d'intelligence artificielle. Pour Jean-Claude Heudin, l'intelligence artificielle ne remplace pas l'homme mais augmente son intelligence, en formant une sorte de « troisième hémisphère ».

Cette idée de complémentarité homme-machine et d'intelligence augmentée nous a convaincus. François Taddéi explique lui que « les intelligences humaine et artificielle coévoluent. Mais ce sont encore les combinaisons homme-machine qui sont les plus performantes : on le voit aux échecs, où une équipe homme-machine est capable de battre et l'homme et la machine ». L'homme et la machine, les hommes-centaures, sont toujours plus forts que toutes les machines.

Pour ce qui concerne la « convergence NBIC », convergences entre les nanotechnologies, les biotechnologies, les technologies de l'information et les sciences cognitives, thème issu du rapport de MM. Roco et Bainbridge à la National Science Foundation (États-Unis) en 2003, ce projet ambitieux de fertilisation croisée n'a pas produit de grands résultats à ce stade mais les progrès en intelligence artificielle, en génomique, en sciences cognitives et en neurosciences reposent la question aujourd'hui.

Notre président Jean-Yves Le Déaut conduit un travail à ce sujet pour l'Assemblée parlementaire du Conseil de l'Europe, en tant que rapporteur pour la science et la technologie, afin que cette convergence soit respectueuse des droits humains.

Nous avons vu que la prospective en intelligence artificielle aboutit souvent à des scénarios de dystopie technologique mais ce pessimisme n'est pas partagé par l'ensemble des futurologues puisque, pour certains, les progrès de l'intelligence artificielle permettront de protéger et prolonger la vie humaine, mais aussi d'offrir une opportunité historique pour concrétiser l'utopie transhumaniste. Le transhumanisme est un mouvement philosophique qui s'apparente à une religion, prédisant et travaillant à une amélioration de la nature de l'homme grâce aux sciences et aux évolutions technologiques. Pour les transhumanistes, l'homme « augmenté » pourrait devenir immortel. Inutile de préciser que je n'y crois pas du tout…

Ce projet transhumaniste de mort de la mort et de fin de la souffrance n'emporte pas l'adhésion de vos rapporteurs. Il s'apparente à une négation de la nature humaine. Pour nous, l'intelligence artificielle n'est pas un acte de foi et ne doit pas le devenir.

Selon Raja Chatila, « derrière ces discours, nous avons des vues de l'esprit qui n'ont rien d'opérationnelles, elles sont en réalité des idéologies, qu'on cherche à imposer pour gommer les différences entre l'humain et le non-humain ».

Il s'agit de chimères qui empêchent de se poser les vraies questions pertinentes. Il est essentiel de savoir anticiper les problèmes potentiels posés par l'intelligence artificielle. À court terme, ces problèmes risquent d'être ignorés et pris à tort pour de la science-fiction. Il convient en effet de distinguer les craintes issues de certaines fictions cinématographiques des problèmes réels qui risquent de survenir plus ou moins rapidement.

J'en arrive donc à nos quinze recommandations. Nous sommes pour une IA maîtrisée, objet de nos cinq premières propositions. Tout d'abord, proposition n° 1 : se garder d'une contrainte juridique trop forte sur la recherche en intelligence artificielle, qui – en tout état de cause – gagnerait à être, autant que possible, européenne, voire internationale, plutôt que nationale.

Proposition n° 2 : favoriser des algorithmes et des robots sûrs, transparents et justes et prévoir une charte de l'intelligence artificielle et de la robotique. Il faut rechercher la transparence des algorithmes contre les boîtes noires, les biais et les discriminations. Il convient de prévoir aussi des mécanismes de traçabilité, de type enregistreurs numériques des avions. Une charte de l'intelligence artificielle et de la robotique la plus internationale possible, européenne à défaut, proclamerait ces objectifs éthiques et viserait à codifier les bonnes pratiques. Elle proposerait des règles sur les interactions homme-machine, en posant des limites en matière d'imitation du vivant, pour les robots androïdes comme pour les agents conversationnels.

Proposition n° 3 : former à l'éthique de l'intelligence artificielle et de la robotique dans les cursus spécialisés de l'enseignement supérieur qui traitent de l'intelligence artificielle et de la robotique.

Proposition n° 4 : confier à un institut national de l'éthique de l'intelligence artificielle et de la robotique un rôle d'animation du débat public sur les principes éthiques qui doivent encadrer ces technologies. Au-delà de la nouvelle mission de la CNIL, cet institut national de l'éthique de l'intelligence artificielle et de la robotique pourra s'intéresser aux problématiques d'explicabilité vues plus haut. La démarche ne doit pas être réservée à une seule structure de recherche, plusieurs équipes doivent y travailler parallèlement et un institut national pourrait impulser les projets, coordonner les recherches, animer le débat public et faire des propositions aux autorités. Les pouvoirs publics ne devront pas être les seuls à le financer. Les entreprises privées, qui se donnent pour objectif d'informer et d'éduquer sur ces technologies et d'accroître leurs effets bénéfiques pour la société (à l'image du « partnership on AI »), pourraient participer au financement de l'institut.

Proposition n° 5 : accompagner les transformations du marché du travail sous l'effet de l'intelligence artificielle et de la robotique en menant une politique de formation continue ambitieuse visant à s'adapter aux exigences de requalification et d'amélioration des compétences. Je propose à titre personnel de réfléchir à un nouveau mode de financement de notre système de protection sociale, qui serait un complément des cotisations existantes et qui pourrait consister en un prélèvement de cotisations sociales sur les agents autonomes, dans la mesure où ils remplacent des emplois occupés par des êtres humains. C'est le rapport de Mady Delvaux qui m'a inspiré cette idée, d'autant que la proposition de taxer les robots a fait son apparition dans la campagne pour les élections présidentielles. Je précise que mon co-rapporteur est contre toute taxe spécifique sur l'intelligence artificielle et les robots.

Aucun commentaire n'a encore été formulé sur cette intervention.

Inscription
ou
Connexion